domingo, 12 de junio de 2011

MITOCONDRIA

Las mitocondrias (Et: del griego μίτος, mítos: hilo, y κόνδρος, kóndros: gránulo) son orgánulos citoplasmáticos provistos de doble membrana que se encuentran en la mayoría de las células eucariotas. Su tamaño varía entre 0,5–10 micrómetros (μm) de longitud. Las mitocondrias se describen en ocasiones como "generadoras de energía" de las células, debido a que producen la mayor parte del suministro de adenosín trifosfato (ATP), que se utiliza como fuente de energía química. Esta expresión ("generadora de energía") es, sin embargo, un eufemismo. La mitocondria cumple un papel central en el flujo energético de la célula debido a que realiza una función metabólica consistente en transferir o transformar la energía química potencial almacenada en las uniones covalentes de ciertas moléculas como la glucosa o ácidos grasos en energía química almacenada en las uniones covalentes entre fosfatos del ATP. Esta última forma de energía química potencial es facilmente utilizable por la célula y ha sido seleccionada a lo largo de la evolución filogenética como el mecanismo por medio del cual todos los procesos celulares que requieren del uso de energía disponen con facilidad de la misma. Además de proporcionar energía en la célula, las mitocondrias están implicadas en otros procesos, como la señalización celular, diferenciación celular,isostasia del calcio, muerte celular programada, así como el control del ciclo celular y el crecimiento celular. En rigor, la mitocondría está involucrada, directa o indirectamente, en todos los procesos fisicoquímicos que requieren el uso de energía para su ejecución. Vale decir, todos aquellos procesos que, desde el punto de vista termodinámico, no se realizan espontáneamente.
Algunas características hacen únicas a las mitocondrias. Su número varía ampliamente según el tipo de organismo o tejido. Algunas células carecen de mitocondrias o poseen sólo una, mientras que otras pueden contener varios miles. Este orgánulo se compone de compartimentos que llevan a cabo funciones especializadas. Entre éstos se encuentran la membrana mitocondrial externa, el espacio intermembranoso, la membrana mitocondrial interna, las crestas y la matriz mitocondrial. Las proteínas mitocondriales varían dependiendo del tejido y de las especies: en humanos se han identificado 615 tipos de proteínas distintas en mitocondrias de músculo cardíaco; mientras que en ratas se han publicado 940 proteínas codificadas por distintos genes. Se piensa que el proteoma mitocondrial está sujeto a regulación dinámica. Aunque la mayor parte del ADN de la célula está en el núcleo celular, la mitocondria tiene su propio genoma, que muestra muchas semejanzas con los genomas bacterianos.




Referencias

Membrana externa
Es una bicapa lipídica exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros, llamadas porinas o VDAC (de canal aniónico dependiente de voltaje), que permiten el paso de grandes moléculas de hasta 10.000 dalton y un diámetro aproximado de 20 Å. La membrana externa realiza relativamente pocas funciones enzimáticas o de transporte. Contiene entre un 60 y un 70% de proteínas.
Membrana interna
La membrana interna contiene más proteínas, carece de poros y es altamente selectiva; contiene muchos complejos enzimáticos y sistemas de transporte transmembrana, que están implicados en la translocación de moléculas. Esta membrana forma invaginaciones o pliegues llamadas crestas mitocondriales, que aumentan mucho la superficie para el asentamiento de dichas enzimas. En la mayoría de los eucariontes, las crestas forman tabiques aplanados perpendiculares al eje de la mitocondria, pero en algunos protistas tienen forma tubular o discoidal. En la composición de la membrana interna hay una gran abundancia de proteínas (un 80%), que son además exclusivas de este orgánulo:
  1. La cadena de transporte de electrones, compuesta por cuatro complejos enzimáticos fijos y dos transportadores de electrones móviles:
    1. Complejo I o NADH deshidrogenasa que contiene flavina mononucleótido (FMN).
    2. Complejo II o succinato deshidrogenasa; ambos ceden electrones al coenzima Q o ubiquinona.
    3. Complejo III o citocromo bc1 que cede electrones al citocromo c.
    4. Complejo IV o citocromo c oxidasa que cede electrones al O2 para producir dos moléculas de agua.
  2. Un complejo enzimático, el canal de H+ ATP-sintasa que cataliza la síntesis de ATP (fosforilación oxidativa).
  3. Proteínas transportadoras que permiten el paso de iones y moléculas a su través, como ácidos grasos, ácido pirúvico, ADP, ATP, O2 y agua; pueden destacarse:
    1. Nucleótido de adenina translocasa. Se encarga de transportar a la matriz mitocondrial el ADP citosólico formado durante las reacciones que consumen energía y, paralelamente transloca hacia el citosol el ATP recién sintetizado durante la fosforilación oxidativa
    2. Fosfato translocasa. Transloca fosfato citosólico junto con un protón a la matriz; el fosfato es esencial para fosforilar el ADP durante la fosforilación oxidativa. 
Espacio intermembranoso
Entre ambas membranas queda delimitado un espacio intermembranoso que está compuesto de un líquido similar al hialoplasma; tienen una alta concentración de protones como resultado del bombeo de los mismos por los complejos enzimáticos de la cadena respiratoria. En él se localizan diversas enzimas que intervienen en la transferencia del enlace de alta energía del ATP, como la adenilato quinasa o la creatina quinasa. También se localiza la carnitina, una molécula implicada en el transporte de ácidos grasos desde el citosol hasta la matriz mitocondrial, donde serán oxidados (beta-oxidación).
Matriz mitocondrial
La matriz mitocondrial o mitosol contiene menos moléculas que el citosol, aunque contiene iones, metabolitos a oxidar, ADN circular bicatenario muy parecido al de las bacterias, ribosomas tipo 55S (70S en vegetales), llamados mitorribosomas, que realizan la síntesis de algunas proteínas mitocondriales, y contiene ARN mitocondrial; es decir, tienen los orgánulos que tendría una célula procariota de vida libre. En la matriz mitocondrial tienen lugar diversas rutas metabólicas clave para la vida, como el ciclo de Krebs y la beta-oxidación de los ácidos grasos; también se oxidan los aminoácidos y se localizan algunas reacciones de la síntesis de urea y grupos hemo.
Función
Del apartado anterior se deduce que la principal función de las mitocondrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas.
Enfermedades mitocondriales

El ADN mitocondrial humano contiene información genética para 13 proteínas mitocondriales y algunos ARN; no obstante, la mayoría de las proteínas de las mitocondrias proceden de genes localizados en el ADN del núcleo celular y que son sintetizadas por ribosomas libres del citosol y luego importadas por el organelo. Se han descrito más de 150 enfermedades mitocondriales, como la enfermedad de Luft o la neuropatía óptica hereditaria de Leber. Tanto las mutaciones del ADN mitocondrial, como del ADN nuclear dan lugar a enfermedades genéticas mitocondriales, que originan un mal funcionamiento de procesos que se desarrollan en las mitocondrias, como alteraciones de enzimas, ARN, componentes de la cadena de transporte de electrones y sistemas de transporte de la membrana interna; muchas de ellas afectan al músculo esquelético y al sistema nervioso central.
El ADN mitocondrial puede dañarse con los radicales libres formados en la mitocondria; así, enfermedades degenerativas relacionadas con el envejecimiento, como la enfermedad de Parkinson, la enfermedad de Alzheimer y las cardiopatías pueden tener relaciones con lesiones mitocondriales.

Enfermedad mitocondrial

Además de la información genética contenida en en núcleo celular (en los cromosomas), las células cuentan también con una pequeña proporción de ADN extranuclear que se encuentra localizado en las mitocondrias.
Las enfermedades mitocondriales son desordenes resultantes de la deficiencia de una o más proteínas localizadas en las mitocondrias e involucradas en el metabolismo.[] Hay descritas unas 150 mutaciones que acaban en enfermedades de distinto tipo. Las enfermedades mitocondriales causan el mayor daño a las células del cerebro, corazón, hígado, músculos esqueléticos, riñones y del sistema endocrino y respiratorio. Ya que los tejidos con mayor dependencia del metabolismo mitocondrial son los más sensibles a las mutaciones mitocondriales.
Dependiendo de cuales sean las células afectadas, los síntomas pueden incluir: pérdida del control motor, debilidad muscular y dolor, desordenes gastrointestinales y dificultades para tragar, retardo en el crecimiento, enfermedad cardíaca, enfermedad hepática, diabetes, complicaciones respiratorias, crisis, problemas visuales/auditivos, acidosis láctica, retrasos en el desarrollo y susceptibilidad a las infecciones.[]

Causas

Como se mencionó, el factor común entre las enfermedades, es la perdida de la capacidad metabólica por parte de las mitocondrias de los tejidos o zonas afectadas. El metabolismo requiere de cientos de reacciones químicas, y cuando uno o más de los intermediarios en estas reacciones no funciona de forma adecuada, hay una crisis energética. Como resultado, los productos del metabolismo incompleto, pueden acumularse como veneno en el cuerpo.
Este veneno puede interrumpir otras reacciones químicas importantes para la supervivencia celular, empeorando aún más la crisis energética. Además, estos venenos pueden actuar como radicales libres (sustancias reactivas que por si solas forman compuestos dañinos con otras moleculas) causando un daño a las mitocondrias a través del tiempo.
La gravedad y el espectro de las enfermedades mitocondriales parece en un primer vistazo desproporcionado respecto a la cantidad tan pequeña de ADN mitocondrial en el genoma humano si lo comparamos con la cantidad de ADN presente en el núcleo celular. Sin embargo, este hecho no se debe al capricho de la naturaleza, sino que existen unas causas determinadas y definidas que dan lugar a este hecho:
  • Todo el ADN mitocondrial es codificante, mientras que en el nuclear existen múltiples intrones no codificantes de genes.
  • Existen menos mecanismos de reparación genética de posibles mutaciones o errores de lectura que en el núcleo.
  • La mitocondria es un orgánulo donde existe una gran presencia de radicales libres.
    • Estos dos últimos puntos hacen que la tasa de mutación llegue a ser diez veces mayor que en el núcleo, lo que explica la gran cantidad de enfermedades genéticas de origen mitocondrial.
Para muchos pacientes, la enfermedad mitocondrial es una condición heredada. Un porcentaje incierto de pacientes adquieren los sintomas debido a otros factores, incluyendo toxinas mitocondriales. El tipo de herencia de las enfermedades mitocondriales es por herencia materna.

Herencia materna

Las enfermedades mitocondriales con herencia materna (también conocida como herencia mitocondrial o citoplasmática) son probablemente tan comunes como las enfermedades mitocondriales autosomales recesivas. Todas las enfermedades de herencia materna son enfermedades mitocondriales.[ ]Algunos ejemplos son: el síndrome MELAS, el síndrome MERRF, el síndrome NARP y la neuropatía óptica hereditaria de Leber.
El ADN mitocondrial (mtDNA) es heredado de la madre. Las mujeres siempre pasaran a la descendencia una mutación en el mtDNA, mientras que los varones nunca lo harán. En consecuencia, un hijo comparte la misma secuencia de mtDNA con sus hermanos o hermanas, y madre, pero no con su padre.
Cada una de las células contiene un número variable de copias de mtDNA, a menudo miles. La mayoría de los individuos "normales" tiene células homoplásmicas, es decir, células que contienen mtDNA normal solamente. Los individuos con enfermedad mitocondrial de herencia materna, y sus parientes de parte materna, usualmente tienen células heteroplásmicas, es decir, que parte del mtDNA es normal y parte contiene la mutación. Las proporciones de heteroplasmia difieren, a menudo en forma drástica, entre los miembros familiares de parte materna. Existe un umbral de la proporción de mtDNA mutante a mtDNA normal, que varía en los diferentes tejidos y en las diferentes mutaciones, luego del cual la célula se convierte en deficiente.
Como consecuencia, los sintomas, gravedad, edad de inicio, etc., de una enfermedad mitocondrial pueden variar ampliamente dentro de una familia. De modo que, a pesar de que una madre con una mutación en el mtDNA pasará la mutación a toda su descendencia, no todos los hijos mostrarán los síntomas necesariamente. Y en el caso de que un hijo muestre los síntomas, la enfermedad puede ser muy diferente respecto de sus hermanos dependiendo del porcentaje de mtDNA mutante en cada región del cuerpo. Lo cual constituye una explicación de porque las enfermedades mitocondriales con herencia materna son muy amplias en sus efectos clínicos.
A diferencia de las enfermedades mitocondriales autosomales recesivas, la edad de inicio de las enfermedades mitocondriales de herencia materna se da usualmente a mayor edad, incluyendo desde niños de 1 a 2 años hasta adultos.[1]

Heteroplasmia y homoplasmia

En cada célula existen unas 500 mitocondrias, y cada una de ellas puede tener entre 2 y 10 copias de ADN mitocondrial. Este hecho puede hacer que dentro de una misma células existan distintas poblaciones de mitocondrias.
  • Homoplásmico: individuo que posee todas las mitocondrias con el mismo genoma.
  • Heteroplásmico: individuo con una mezcla de poblaciones distintas de mitocondrias. Ejemplo: puede tener dos poblaciones diferentes de mitocondrias. Puede ser que la persona tenga en todas sus células los dos tipos mitocondriales o que esté más restringido tenga un tipo de mitocondria en un tejido, y el otro tipo en otro tejido diferente.
La heteroplasmia puede acabar en sustituciones de poblaciones por fenómenos de deriva o selección.
Por tanto, a partir de estos dos conceptos podemos clasificar dos tipos de herencia materna:
  • Herencia materna homoplásmica: herencia todo o nada.
  • Herencia materna heteroplásmica: afectados según relación de los tipos de mitocondrias.

Síntomas más comunes

Las enfermedades mitocondriales pueden afectar las células del cerebro, nervios, músculos, riñones, corazón, hígado, ojos, oídos o páncreas. Según las características del caso, puede haber un órgano afectado, más de uno, o inclusive todos los órganos pueden estar afectados. Dependiendo de las características de la enfermedad, de las características del individuo y de factores ambientales, la gravedad de la enfermedad puede ir desde leve hasta fatal.
Dependiendo de cuales son las células del cuerpo afectadas, algunos de los síntomas pueden ser:

En el cerebro

En los nervios

En los músculos

En los riñones

En el corazón

En el hígado

En ojos y oídos

En el páncreas y otras glándulas

Sistémicos

  • dificultad para aumentar de peso,
  • fatiga,
  • vómitos,
  • baja estatura,
  • problemas respiratorios

Clasificación

Encefalomiopatías mitocondriales

Algunos ejemplos de encefalomiopatías mitocondriales son:

Otras enfermedades mitocondriales

  • Diabetes mellitus y sordera (DAD)
    • esta combinación en una edad temprana se puede deber a enfermedad mitocondrial
    • la diabetes mellitus y la sordera se pueden encontrar juntas también por otras razones
  • Neuropatía óptica hereditaria de Leber (LHON)
  • Síndrome de Leigh
    • luego del desarrollo normal la enfermedad comienza usualmente en el primer año de vida, pero los primeros síntomas pueden aparecer en la adultez
    • ocurre una rápida declinación en la función y es evidenciada por ataques, estados alterados de la conciencia, demencia y falla respiratoria

1 comentario: